EAU GUIDELINES ON RENAL CELL CARCINOMA

(Limited text update March 2018)

B. Ljungberg (Chair), L. Albiges, K. Bensalah, A. Bex (Vice-chair), R.H. Giles (Patient Advocate), M. Hora, M.A. Kuczyk, T. Lam, L. Marconi, A.S. Merseburger, T. Powles, M. Staehler, A. Volpe Guidelines Associates: Y. Abu-Ghanem, S. Dabestani, S. Fernández-Pello Montes, F. Hofmann, R. Tahbaz

Epidemiology

The use of imaging techniques such as ultrasound (US) and computerised tomography (CT) has increased the detection of asymptomatic renal cell cancer (RCC). The peak incidence of RCC occurs between 60 and 70 years of age, with a 3 : 2 ratio of men to women. Aetiological factors include lifestyle factors, such as smoking, obesity and hypertension. Having a first-degree relative with RCC is associated with a significantly increased risk of RCC.

Staging system

The current UICC 2017 TNM (Tumour Node Metastasis) classification is recommended for the staging of RCC (Table 1).

Table 1: The 2017 TNM staging classification system

T-P	rimary Tumour
TX	Primary tumour cannot be assessed
T0	No evidence of primary tumour
T1	Tumour \leq 7 cm or less in greatest dimension, limited to
	the kidney
	T1a Tumour ≤ 4 cm or less
	T1b Tumour > 4 cm but ≤ 7 cm
T2	Tumour > 7 cm in greatest dimension, limited to the
	kidney
	T2a Tumour > 7 cm but ≤ 10 cm
	T2b Tumours > 10 cm, limited to the kidney
T3	Tumour extends into major veins or perinephric tissues
	but not into the ipsilateral adrenal gland and not
	beyond Gerota fascia
	T3a Tumour grossly extends into the renal vein or
	its segmental (muscle-containing) branches, or tumour invades perirenal and/or renal sinus fat
	(peripelvic), but not beyond Gerota fascia
	T3b Tumour grossly extends into the vena cava below
	diaphragm
	T3c Tumour grossly extends into vena cava above the
	diaphragm or invades the wall of the vena cava
T4	Tumour invades beyond Gerota fascia (including
	contiguous extension into the ipsilateral adrenal gland)
N - R	legional Lymph Nodes
NX	Regional lymph nodes cannot be assessed
N0	No regional lymph node metastasis
N1	Metastasis in regional lymph node(s)

M - Distant	Metastasis			
M0 No di	stant metastas	is		
M1 Dista	nt metastasis			
TNM stage	TNM stage grouping			
Stage I	T1	N0	M0	
Stage II	T2	N0	M0	
Stage III	Т3	N0	M0	
	T1, T2, T3	N1	M0	
Stage IV	T4	Any N	M0	
	Any T	Any N	M1	

A help desk for specific questions about TNM classification is available at <u>http://www.uicc.org/tnm</u>.

Clinical Diagnosis

Many renal masses remain asymptomatic until late disease stages. The classic triad of flank pain, visible haematuria, and palpable abdominal mass is rare and correlates with aggressive histology and advanced disease.

Paraneoplastic syndromes are found in approximately 30% of patients with symptomatic RCCs. A few symptomatic patients present with symptoms caused by metastatic disease, such as bone pain or persistent cough.

Imaging

Computed tomography imaging, before and after intravenous contrast, can verify the diagnosis and provide information on the function and morphology of the contralateral kidney and assess tumour extension, including extra-renal spread, venous involvement, and enlargement of lymph nodes (LNs) and adrenals.

Abdominal US and magnetic resonance imaging (MRI) are supplements to CT. Contrast-enhanced US can be helpful in specific cases (e.g., chronic renal failure with a relative contraindication for iodinated or gadolinium-based contrast media, complex cystic masses, and differential diagnosis of peripheral vascular disorders such as infarction and cortical necrosis).

Magnetic resonance imaging can be used in patients with possible venous involvement, or allergy to intravenous contrast. Chest CT is the most accurate for chest staging and is recommended in the primary work–up of patients with suspected RCC.

In patients with hereditary RCC who are worried about the radiation exposure of frequent CT scans, MRI may be offered as alternative for follow-up imaging.

Biopsy

Percutaneous renal tumour biopsies are used:

- to obtain histology of radiologically indeterminate renal masses;
- to select patients with small renal masses for active surveillance;
- to obtain histology before, or simultaneously with, ablative treatments;
- to select the most suitable form of medical and surgical strategy in the setting of metastatic disease.

In patients with any sign of impaired renal function, a renal scan and total renal function evaluation using estimated glomerular filtration rate should always be undertaken to optimise the treatment decision.

Renal biopsy is not indicated for comorbid and frail patients who can be considered only for conservative management (watchful waiting) regardless of biopsy results.

Recommendations for the diagnostic assessment of renal cell cancer	Strength rating
Use multi-phasic contrast-enhanced computed tomography (CT) of abdomen and chest for the diagnosis and staging of renal tumours.	Strong
Use magnetic resonance imaging to better evaluate venous involvement, reduce radiation or avoid intravenous CT contrast.	Weak
Use non-ionising modalities, mainly contrast enhanced ultrasound, for further characterisation of small renal masses, tumour thrombus and differentiation of unclear renal masses.	Weak
Do not routinely use bone scan and/or positron-emission tomography (PET) CT for staging of RCC.	Weak
Perform a renal tumour biopsy before ablative therapy and systemic therapy without previous pathology.	Strong
Perform a percutaneous biopsy in select patients who are considered for active surveillance.	Weak
Use a coaxial technique when performing a renal tumour biopsy.	Strong
Do not perform a renal tumour biopsy of cystic renal masses.	Strong
Use a core biopsy technique rather than fine needle aspiration for histological characterisation for solid renal tumours.	Strong

Histological diagnosis

A variety of renal tumours exist, and about 15% are benign. All kidney lesions require examination for malignant behaviour.

Histopathological classification

The new WHO/ISUP classification will replace the Fuhrman nuclear grade system in due time but will need validation.

The three most common RCC subtypes, with genetic and histological differences, are: clear cell RCC (80-90%), papillary RCC (10-15%), and chromophobe RCC (4-5%). The various RCC types have different clinical courses and responses to therapy.

Prognostic factors

In all RCC types, prognosis worsens with stage and histopathological grade. Histological factors include tumour grade, RCC subtype, sarcomatoid features, microvascular invasion, tumour necrosis, and invasion of the perirenal fat and collecting system. Clinical factors include performance status (PS), local symptoms, cachexia, anaemia, platelet count, neutrophil/lymphocyte ratio, C-reactive protein and albumin.

Recommendations	Strength rating
Use the current Tumour, Node, Metastasis classification system.	Strong
Use grading systems and classify RCC subtype.	Strong
Use prognostic systems in the metastatic setting.	Strong
In localised disease, use integrated prognostic systems or nomograms to assess risk of recurrence.	Strong

Disease Management Treatment of localised RCC

Localised renal cancers are best managed with partial nephrectomy (PN) rather than radical nephrectomy (RN), irrespective of the surgical approach. Partial nephrectomy is unsuitable in some patients with localised RCC due to:

- locally advanced tumour growth;
- unfavourable tumour location;
- significant health deterioration.

If pre-operative imaging and intra-operative findings are normal, routine adrenalectomy is not indicated. Lymphadenectomy should be restricted to staging because the survival benefit of extended LN dissection is unclear in patients with localised disease. In patients who have RCCs with tumour thrombus and no metastatic spread, prognosis is improved after nephrectomy and complete thrombectomy.

Nephron-sparing surgery versus radical nephrectomy

Based on current available oncological and quality of life outcomes, localised renal cancers are best managed by nephron-sparing surgery (NSS) rather than RN, irrespective of the surgical approach. Before routine nephrectomy, tumour embolisation has no benefit. In patients unfit for surgery with massive haematuria or flank pain, embolisation can be a beneficial palliative approach.

Recommendations	Strength rating
Offer surgery to achieve cure in localised RCC.	Strong
Offer partial nephrectomy to patients with T1 tumours.	Strong

Do not perform ipsilateral adrenalectomy if there is no clinical evidence of invasion of the adrenal gland.	Strong
Consider an extended lymph node dissection in patients with adverse clinical features including a large diameter of the primary tumour.	Weak
Offer embolisation in patients unfit for surgery presenting with massive haematuria or flank pain.	Weak

Radical- and partial nephrectomy techniques

Summary of evidence	LE
Laparoscopic RN has lower morbidity than open	1b
surgery.	
Oncological outcomes for T1-T2a tumours are	2a
equivalent between laparoscopic and open RN.	
Partial nephrectomy can be performed, either with an	2b
open, pure laparoscopic- or robot-assisted approach,	
based on surgeon's expertise and skills.	
Partial nephrectomy is associated with a higher	3
percentage of positive surgical margins compared	
with RN.	

Recommendations	Strength rating
Offer laparoscopic radical nephrectomy (RN)	Strong
to patients with T2 tumours and localised	
masses not treatable by partial	
nephrectomy.	

Do not perform minimally invasive RN in patients with T1 tumours for whom a partial nephrectomy is feasible by any approach, including open.	Strong
Do not perform minimally invasive surgery if this approach may compromise oncological, functional and perioperative outcomes.	Strong

Alternatives to surgery Surveillance

Elderly and comorbid patients with incidental small renal masses have a low RCC-specific mortality and significant competing-cause mortality. In selected patients with advanced age and/or comorbidities, active surveillance (AS) is appropriate to initially monitor small renal masses, followed, if required, by treatment for progression. The concept of AS differs from the concept of watchful waiting. Watchful waiting is reserved for patients whose comorbidities contraindicate any subsequent active treatment and who do not require follow-up imaging, unless clinically indicated.

Cryoablation and radiofrequency ablation

Currently there are no data showing oncological benefit of cryoablation or radiofrequency ablation (RFA) techniques over PN.

Recommendations	Strength rating
Offer active surveillance, radiofrequency	Weak
ablation and cryoablation to elderly and/or	
comorbid patients with small renal masses.	

Treatment of locally advanced RCC Management of clinically positive lymph nodes (cN+)

In the presence of clinically positive LNs (cN+), LND is always justified but the extent of LND is still controversial.

Low level data suggest that tumour thrombus in the setting of non-metastatic disease should be excised. Adjunctive procedures such as tumour embolisation or inferior vena cava filter do not appear to offer any benefits in the treatment of tumour thrombus.

In patients unfit for surgery, or with non-resectable disease, embolisation can control symptoms, including visible haematuria or flank pain. At present there is no evidence for the use of adjuvant therapy following surgery.

Treatment of advanced/metastatic RCC Management of RCC with venous tumour thrombus

Recommendations	Strength rating
In patients with clinically enlarged lymph	Weak
nodes, perform lymph node dissection for	
staging purposes or local control.	
In case of venous involvement, remove the	Strong
renal tumour and thrombus.	

Cytoreductive nephrectomy

Tumour nephrectomy is curative only if all tumour deposits are excised. This includes patients with the primary tumour in place and single- or oligo-metastatic resectable disease. For most patients with metastatic disease, cytoreductive nephrectomy is palliative and systemic treatments are necessary.

Summary of evidence	LE
Cytoreductive nephrectomy combined with	1a
interferon-alpha (INF- α) improves survival in patients	
with metastatic RCC and good performance status.	
Deferred cytoreductive nephrectomy with presurgical	2b
sunitinib in intermediate-risk patients with clear-cell	
metastatic RCC leads to a survival benefit in	
secondary endpoint analysis and selects out patients	
with inherent resistance to systemic therapy.	
Cytoreductive nephrectomy for patients with	3
simultaneous complete resection of a single	
metastasis or oligometastases may improve survival	
and delay systemic therapy.	
Patients with IMDC poor risk (≥ four risk factors) do	2b
not benefit.	

Recommendations	Strength rating
Offer cytoreductive nephrectomy to	Weak
favourable- and intermediate-risk patients	
with metastatic RCC (mRCC).	
Do not offer cytoreductive nephrectomy	Weak
in IMDC poor-risk patients with \geq four risk	
factors.	
Perform immediate cytoreductive	Weak
nephrectomy in patients with	
oligometastases when complete resection	
can be achieved.	
Offer deferred cytoreductive nephrectomy	Weak
to intermediate-risk patients with clear-cell	
mRCC who require systemic therapy with	
sunitinib.	

IMDC = The Metastatic Renal Cancer Database Consortium.

Local therapy of metastases in metastatic RCC (mRCC)

A systematic review of the local treatment of metastases from RCC in any organ was undertaken. The heterogeneity of the data will only allow for cautious recommendations.

Summary of evidence	LE
All included studies were retrospective	3
non-randomised comparative studies, resulting in a	
high risk of bias associated with non-randomisation,	
attrition, and selective reporting.	
With the exception of brain and possibly bone	3
metastases, metastasectomy remains by default the	
only local treatment for most sites.	
Retrospective comparative studies consistently point	3
towards a benefit of complete metastasectomy in	
mRCC patients in terms of overall survival, cancer-	
specific survival and delay of systemic therapy.	
Radiotherapy to bone and brain metastases from RCC	3
can induce significant relief from local symptoms	
(e.g. pain).	

Recommendations	Strength rating
Offer local therapy for metastatic disease	Weak
(including metastasectomy) to patients	
with a favourable disease profile in whom	
complete resection is achievable or when	
local symptoms need to be controlled.	
Offer stereotactic radiotherapy for clinically	Weak
relevant bone or brain metastases for local	
control and symptom relief.	

Systemic therapy for advanced/metastatic RCC Chemotherapy

Summary of evidence	LE
In metastatic RCC, 5-fluorouracil combined with	1b
immunotherapy has equivalent efficacy to INF- α .	
In metastatic RCC, chemotherapy is otherwise not	3
effective with the exception of gemcitabine and	
doxorubicine in sarcomatoid and rapidly progressive	
disease.	

Recommendation	Strength rating
Do not offer chemotherapy as first-line	Strong
therapy in patients with clear-cell	
metastatic RCC.	

Immunotherapy

Interferon- α may only be effective in some patient subgroups, including patients with clear-cell RCC (ccRCC), favourable-risk criteria, and lung metastases only. Interleukin-2 (IL-2), vaccines and targeted immunotherapy have no place in the standard treatment of advanced/mRCC.

Immune checkpoint inhibition of programmed death receptor (PD-1) and ligand (PD-L1) inhibition have been investigated in mRCC. Randomised data support the use of nivolumab (a PD-1 inhibitor) in vascular endothelial growth factor (VEGF)refractory disease. A combination of two immune checkpoint inhibitors ipilimumab and nivolumab versus sunitinib in a phase III study on metastatic RCC showed superior survival for a combination of ipilimumab and nivolumab in intermediate- and poor-risk patients.

Summary of evidence	LE
Interferon- α monotherapy is inferior to VEGF-targeted therapy or mTOR inhibition in mRCC.	1b
Interleukin (IL)-2 monotherapy may have an effect in selected cases (good PS, ccRCC, lung metastases only).	2a
IL-2 has more side-effects than IFN- α .	2b
High-dose (HD)-IL-2 is associated with durable complete responses in a limited number of patients. However, no clinical factors or biomarkers exist to accurately predict a durable response in patients treated with HD-IL-2.	1b
Bevacizumab plus IFN- α is more effective than IFN- α in treatment-naïve, low-risk and intermediate-risk ccRCC.	1b
Vaccination therapy with tumour antigen 5T4 showed no survival benefit over first-line standard therapy.	1b
Cytokine combinations, with or without additional chemotherapy, do not improve overall survival (OS) compared with monotherapy.	1b
Nivolumab leads to superior OS compared to everolimus in patients failing one or two lines of VEGF-targeted therapy.	1b
The combination of nivolumab and ipilimumab in treatment-naïve patients with clear-cell mRCC of IMDC intermediate-and poor-risk leads to superior survival compared to sunitinib.	1b
The combination of nivolumab and ipilimumab in the intention to treat population of treatment-naïve unselected patients with clear-cell mRCC leads to superior survival compared to sunitinib.	2b

Due to the exploratory nature of PD-L1 tumour expression, the small sample size, the lack of OS data and the premature results in this subpopulation,	2b
definitive conclusions cannot be drawn.	
Nivolumab plus ipilimumab was associated with 15% grade 3-5 toxicity and 1.5% treatment-related deaths.	1b

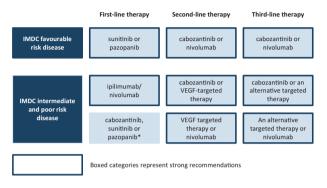
Recommendations	Strength rating
Use ipilimumab plus nivolumab in	Strong
treatment-naïve patients with clear-cell mRCC of IMDC intermediate and poor risk.	
Offer nivolumab after one or two lines of VEGF-targeted therapy in mRCC.	Strong
Do not offer monotherapy with interferon- α or high-dose bolus interleukin-2 as first-line therapy in mRCC.	Weak
Do not use bevacizumab plus INF-α in treatment-naïve clear-cell favourable- and intermediate-risk RCC patients.	Weak
Do not use PD-L1 tumour expression as a predictive biomarker.	Weak
Administer nivolumab plus ipilimumab in centres with experience of immune combination therapy and appropriate supportive care within the context of a multidisciplinary team.	Weak
Do not rechallange patients who stop nivolumab plus ipilimumab because of toxicity with the same drugs in the future without expert guidance and support from a multidisciplinary team.	Strong

IMDC = The Metastatic Renal Cancer Database Consortium; VEGF = vascular endothelial growth factor.

Targeted therapies

At present, several targeting drugs have been approved both for the treatment of mRCC.

Summary of evidence	LE
VEGF-targeted therapies increase progression-free survival (PFS) and/or OS as both first-line and second- line treatments for patients with clear-cell mRCC.	1b
Cabozantinib in intermediate-and poor-risk treatment- naïve clear-cell RCC leads to better response rates and PFS but not OS when compared to sunitinib.	1a
Tivozanib has recently been approved but the evidence is still considered inferior over existing choices.	3
Axitinib has proven efficacy and superiority in PFS as a second-line treatment after failure of cytokines and VEGF-targeted therapy in comparison with sorafenib.	1b
Sunitinib is more effective than IFN- α in treatment-naïve patients.	1b
In treatment-naïve patients, bevacizumab in combination with $INF-\alpha$ has not been tested against nivolumab plus ipilimumab and the evidence for subsequent therapies is unclear.	1b
Pazopanib is superior to placebo in both treatment- naïve mRCC patients and post-cytokine patients.	1b
First-line pazopanib is not inferior to sunitinib in clear- cell mRCC patients.	1b
Temsirolimus monotherapy prolongs OS compared to IFN- α in treatment-naïve poor-risk mRCC.	1b
In treatment-naïve patients, temsirolimus has not been tested against nivolumab plus ipilimumab and the evidence for subsequent therapies is unclear.	3


Cabozantinib is superior to everolimus in terms of PFS and OS in patients after one or more lines of VEGF-targeted therapy.	1b
Everolimus prolongs PFS after VEGF-targeted therapy when compared to placebo or when the patient cannot tolerate these therapies.	1b
Sorafenib has broad activity in a spectrum of settings in ccRCC patients previously treated with cytokine or targeted therapies. It is inferior to axitinib in both sunitinib or cytokine pre-treated patients.	4
Both mTOR inhibitors (everolimus and temsirolimus) and VEGF-targeted therapies (sunitinib or sorafenib) have limited oncological efficacy in non-clear cell RCC. There is a non-significant trend for improved oncological outcomes for sunitinib, over everolimus.	2a
Lenvatinib in combination with everolimus modestly improved PFS over everolimus alone.	2a

Recommendations	Strength rating
Use sunitinib or pazopanib in treatment- naïve patients with clear-cell mRCC of IMDC favourable risk.	Strong
Use cabozantinib in treatment-naïve patients with clear-cell mRCC of IMDC intermediate and poor risk.	Weak
Do not use bevacizumab plus INF-α in treatment-naïve clear-cell favourable- and intermediate-risk RCC patients.	Weak
Do not use tivozanib in treatment-naïve clear-cell mRCC patients.	Weak
Do not use temsirolimus in treatment-naïve clear-cell poor-risk RCC patients.	Weak

Use VEGF-TKIs in second-line in patients refractory to nivolumab plus ipilimumab.	Weak
Offer cabozantinib for ccRCC after one or two lines of VEGF-targeted therapy in mRCC.	Strong
Offer axitinib, everolimus or lenvatinib plus everolimus to ccRCC patients who failed VEGF-targeted therapy, and when nivolumab or cabozantinib are not safe, tolerable or available.	Strong
Sequence systemic therapy in treating mRCC.	Strong
Offer sunitinib as first-line therapy for non-clear cell mRCC.	Weak
Do not offer sorafenib as second-line treatment to patients with mRCC.	Weak

IMDC = The Metastatic Renal Cancer Database Consortium; VEGF = vascular endothelial growth factor.

Figure 1: Updated EAU Guidelines recommendations for the treatment of first-line clear-cell metastatic renal cancer.

IMDC = The International Metastatic Renal Cell Carcinoma Database Consortium; VEGF = vascular endothelial growth factor.

*pazopanib for intermediate-risk disease only.

Recurrent RCC

Locally recurrent disease can occur either after nephrectomy, PN, or after ablative therapy. After nephron-sparing treatment approaches the recurrence may be intra-renal or regional, e.g. venous tumour thrombi or retroperitoneal LN metastases. Isolated local recurrence in the true renal fossa is rare. Patients can benefit from a complete surgical resection of local recurrent disease. In cases where complete surgical removal is not feasible due to advanced tumour growth and pain, palliative treatments including radiation treatment can be considered.

Surveillance following surgery for RCC

The aim of surveillance is to detect either local recurrence or metastatic disease while the patient is still surgically curable. Surveillance after treatment for RCC allows the urologist to identify:

- postoperative complications;
- renal function;
- local recurrence;
- recurrence in the contralateral kidney;
- development of metastases.

Depending on the availability of new effective treatments, more intensive follow-up schedules may be required, particularly as there is a higher local recurrence rate after cryotherapy and RFA. At present there is no evidence-based standard for the follow-up of patients with RCC, or for the optimal duration of follow-up. An example of a surveillance algorithm monitoring patients after treatment for RCC that recognises not only the patient's risk profile but also treatment efficacy is provided in Table 2. For patients with metastatic disease, individualised follow-up is indicated.

Table 2: Proposed surveillance schedule following treatment for RCC, taking into account patient risk profile and treatment efficacy

Risk profile	Surveillance				
	6 mo	1у	2у	3 y	>3y
Low	US	СТ	US	СТ	CT once every 2 years; counsel about recurrence risk of ~10%
Intermediate	CT	CT	CT	CT	CT once every 2 years

CT = computed tomography of chest and abdomen, alternatively use magnetic resonance imaging for the abdomen; US = ultrasound of abdomen, kidneys and renal bed.

Summary of evidence and recommendations for surveillance following RN or PN orablative therapies in RCC

Summary of evidence		
Surveillance can detect local recurrence or metastatic disease while the patient is still surgically curable.		
After NSS, there is an increased risk of recurrence for larger (> 7 cm) tumours, or when there is a positive surgical margin.		
Patients undergoing surveillance have a better overall survival than patients not undergoing surveillance.		
Repeated CT scans do not reduce renal function in chronic kidney disease patients.		

Recommendations	Strength rating
Base follow-up after RCC on the risk of	Strong
recurrence.	
Intensify follow-up in patients after NSS	Weak
for tumours > 7 cm or in patients with a	
positive surgical margin.	
Base risk stratification on pre-existing	Strong
classification systems such as the	
University of California Los Angeles	
integrated staging system integrated risk	
assessment score	
(http://urology.ucla.edu/body.cfm?id=443).	

This short booklet text is based on the more comprehensive EAU Guidelines (ISBN: 978-94-92671-01-1), available to all members of the European Association of Urology at their website: <u>http://www.uroweb.org/guidelines/</u>.

100 Renal Cell Carcinoma